Maxmin Strategies

Game Theory Course: Jackson, Leyton-Brown \& Shoham

Maxmin Strategies

- Player i 's maxmin strategy is a strategy that maximizes i 's worst-case payoff, in the situation where all the other players (whom we denote $-i$) happen to play the strategies which cause the greatest harm to i.
- The maxmin value (or safety level) of the game for player i is that minimum payoff guaranteed by a maxmin strategy.

Definition (Maxmin)
 The
 for player i is $\arg \max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$, and for player i is $\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$.

- Why would i want to play a maxmin strategy?

Maxmin Strategies

- Player i 's maxmin strategy is a strategy that maximizes i 's worst-case payoff, in the situation where all the other players (whom we denote $-i$) happen to play the strategies which cause the greatest harm to i.
- The maxmin value (or safety level) of the game for player i is that minimum payoff guaranteed by a maxmin strategy.

Definition (Maxmin)

The
for player i is $\arg \max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$, and the for player i is $\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$.

- Why would i want to play a maxmin strategy?
- a conservative agent maximizing worst-case payoff
- a paranoid agent who believes everyone is out to get him

Minmax Strategies

- Player i 's minmax strategy against player $-i$ in a 2-player game is a strategy that minimizes $-i$'s best-case payoff, and the minmax value for i against $-i$ is payoff.

Definition (Minmax, 2-player)

```
In a two-player game, the minmax strategy for player i against
player -i is arg min
    is min}\mp@subsup{s}{\mp@subsup{s}{i}{}}{}\mp@subsup{\operatorname{max}}{\mp@subsup{s}{-i}{}}{}\mp@subsup{u}{-i}{}(\mp@subsup{s}{i}{},\mp@subsup{s}{-i}{})
```

- Why would i want to play a minmax strategy?

Minmax Strategies

- Player i 's minmax strategy against player $-i$ in a 2-player game is a strategy that minimizes $-i$'s best-case payoff, and the minmax value for i against $-i$ is payoff.

Definition (Minmax, 2-player)

```
In a two-player game, the
    for player i against
player - i is arg min }\mp@subsup{\operatorname{sin}}{\mp@subsup{s}{i}{}}{}\mp@subsup{\operatorname{max}}{\mp@subsup{s}{-i}{}}{}\mp@subsup{u}{-i}{}(\mp@subsup{s}{i}{},\mp@subsup{s}{-i}{})\mathrm{ , and player -i's
    is min}\mp@subsup{s}{i}{}\mp@subsup{\operatorname{max}}{\mp@subsup{s}{-i}{}}{}\mp@subsup{u}{-i}{}(\mp@subsup{s}{i}{},\mp@subsup{s}{-i}{})
```

- Why would i want to play a minmax strategy?
- to punish the other agent as much as possible

Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))
In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))
In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.
I. Each player's maxmin value is equal to his minmax value. The maxmin value for player I is called the value of the game.

Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))
In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.
I. Each player's maxmin value is equal to his minmax value. The maxmin value for player I is called the value of the game.
2. For both players, the set of maxmin strategies coincides with the set of minmax strategies.

Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))
In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.
I. Each player's maxmin value is equal to his minmax value. The maxmin value for player I is called the value of the game.
2. For both players, the set of maxmin strategies coincides with the set of minmax strategies.
3. Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a Nash equilibrium. Furthermore, these are all the Nash equilibria. Consequently, all Nash equilibria have the same payoff vector (namely, those in which player I gets the value of the game).

Saddle Point: Matching Pennies

2×2 Zero-sum Games

- Minmax or maxmin produces the same result as method for finding NE in general 2×2 games;
- Check against penalty kick game.

	Goalie		
Kicker		L	R
		$0.6,0.4$	$0.8,0.2$
	R	$0.9,0.1$	$0.7,0.3$

How does the kicker maximize his minimum?

Goalie

	L	L	R
Kicker	L	$0.6,0.4$	$0.8,0.2$
		$0.9,0.1$	$0.7,0.3$

How does the kicker maximize his minimum?

$$
\max _{s_{1}} \min _{s_{2}}\left[s_{1}(L) s_{2}(L) \cdot 0.6+s_{1}(L) s_{2}(R) \cdot 0.8+s_{1}(R) s_{2}(L) \cdot 0.9+s_{1}(R) s_{2}(R) \cdot 0.7\right]
$$

What is his minimum?

	Goalie		
Kicker			L
		L	
		$0.6,0.4$	$0.8,0.2$
		$0.9,0.1$	$0.7,0.3$

What is his minimum?

$$
\begin{aligned}
& \min _{s_{2}}\left[s_{1}(L) s_{2}(L) \cdot 0.6+s_{1}(L) s_{2}(R) \cdot 0.8+s_{1}(R) s_{2}(L) \cdot 0.9+s_{1}(R) s_{2}(R) \cdot 0.7\right] \\
& =\min _{s_{2}}\left[\begin{array}{l}
s_{1}(L) s_{2}(L) \cdot 0.6+s_{1}(L)\left(1-s_{2}(L)\right) \cdot 0.8+ \\
+\left(1-s_{1}(L)\right) s_{2}(L) \cdot 0.9+\left(1-s_{1}(L)\right)\left(1-s_{2}(L)\right) \cdot 0.7
\end{array}\right]
\end{aligned}
$$

What is his minimum?

$$
\begin{gathered}
\min _{s_{2}}\left[s_{1}(L) s_{2}(L) \cdot 0.6+s_{1}(L) s_{2}(R) \cdot 0.8+s_{1}(R) s_{2}(L) \cdot 0.9+s_{1}(R) s_{2}(R) \cdot 0.7\right] \\
=\min _{s_{2}}\left[\begin{array}{l}
s_{1}(L) s_{2}(L) \cdot 0.6+s_{1}(L)\left(1-s_{2}(L)\right) \cdot 0.8+ \\
+\left(1-s_{1}(L)\right) s_{2}(L) \cdot 0.9+\left(1-s_{1}(L)\right)\left(1-s_{2}(L)\right) \cdot 0.7
\end{array}\right] \\
=\min _{s_{2}}\left[\left(0.2-s_{1}(L) \cdot 0.4\right) \cdot s_{2}(L)+\left(0.7+s_{1}(L) \cdot 0.1\right)\right]
\end{gathered}
$$

What is his minimum?

$$
\begin{gathered}
\min _{s_{2}}\left[s_{1}(L) s_{2}(L) \cdot 0.6+s_{1}(L) s_{2}(R) \cdot 0.8+s_{1}(R) s_{2}(L) \cdot 0.9+s_{1}(R) s_{2}(R) \cdot 0.7\right] \\
=\min _{s_{2}}\left[\begin{array}{c}
s_{1}(L) s_{2}(L) \cdot 0.6+s_{1}(L)\left(1-s_{2}(L)\right) \cdot 0.8+ \\
+\left(1-s_{1}(L)\right) s_{2}(L) \cdot 0.9+\left(1-s_{1}(L)\right)\left(1-s_{2}(L)\right) \cdot 0.7
\end{array}\right] \\
\quad=\min _{s_{2}}\left[\left(0.2-s_{1}(L) \cdot 0.4\right) \cdot s_{2}(L)+\left(0.7+s_{1}(L) \cdot 0.1\right)\right] \\
\Rightarrow 0.2-s_{1}(L) \cdot 0.4=0 \\
\Rightarrow s_{1}(L)=1 / 2, s_{1}(R)=1 / 2
\end{gathered}
$$

How does the goalie minimize the kicker's maximum?

Goalie

	L	R	
Kicker	L	$0.6,0.4$	$0.8,0.2$
		$0.9,0.1$	$0.7,0.3$

How does the goalie minimize the kicker's maximum?

$$
\min _{s_{2}} \max _{s_{1}}\left[s_{1}(L) s_{2}(L) \cdot 0.6+s_{1}(L) s_{2}(R) \cdot 0.8+s_{1}(R) s_{2}(L) \cdot 0.9+s_{1}(R) s_{2}(R) \cdot 0.7\right]
$$

What is the kicker's maximum?

	Goalie			
Kicker		L	R	
		$0.6,0.4$	$0.8,0.2$	
	R	$0.9,0.1$	$0.7,0.3$	

What is the kicker's maximum?

$$
\begin{aligned}
& \max _{s_{1}}\left[s_{1}(L) s_{2}(L) \cdot 0.6+s_{1}(L) s_{2}(R) \cdot 0.8+s_{1}(R) s_{2}(L) \cdot 0.9+s_{1}(R) s_{2}(R) \cdot 0.7\right] \\
& =\max _{s_{1}}\left[\begin{array}{l}
s_{1}(L) s_{2}(L) \cdot 0.6+s_{1}(L)\left(1-s_{2}(L)\right) \cdot 0.8+ \\
+\left(1-s_{1}(L)\right) s_{2}(L) \cdot 0.9+\left(1-s_{1}(L)\right)\left(1-s_{2}(L)\right) \cdot 0.7
\end{array}\right]
\end{aligned}
$$

	Goalie			
Kicker		L	R	
		$0.6,0.4$	$0.8,0.2$	
	R	$0.9,0.1$	$0.7,0.3$	

What is the kicker's maximum?

$$
\begin{aligned}
& \max _{s_{1}}\left[s_{1}(L) s_{2}(L) \cdot 0.6+s_{1}(L) s_{2}(R) \cdot 0.8+s_{1}(R) s_{2}(L) \cdot 0.9+s_{1}(R) s_{2}(R) \cdot 0.7\right] \\
& =\max _{s_{1}}\left[\begin{array}{l}
s_{1}(L) s_{2}(L) \cdot 0.6+s_{1}(L)\left(1-s_{2}(L)\right) \cdot 0.8+ \\
+\left(1-s_{1}(L)\right) s_{2}(L) \cdot 0.9+\left(1-s_{1}(L)\right)\left(1-s_{2}(L)\right) \cdot 0.7
\end{array}\right] \\
& \quad=\max _{s_{1}}\left[\left(0.1-s_{2}(L) \cdot 0.4\right) \cdot s_{1}(L)+\left(0.7+s_{2}(L) \cdot 0.2\right)\right]
\end{aligned}
$$

	L		Goalie	
Kicker	L	$0.6,0.4$	$0.8,0.2$	
	R	$0.9,0.1$	$0.7,0.3$	

What is the kicker's maximum?

$$
\begin{gathered}
\max _{s_{1}}\left[s_{1}(L) s_{2}(L) \cdot 0.6+s_{1}(L) s_{2}(R) \cdot 0.8+s_{1}(R) s_{2}(L) \cdot 0.9+s_{1}(R) s_{2}(R) \cdot 0.7\right] \\
=\max _{s_{1}}\left[\begin{array}{l}
s_{1}(L) s_{2}(L) \cdot 0.6+s_{1}(L)\left(1-s_{2}(L)\right) \cdot 0.8+ \\
+\left(1-s_{1}(L)\right) s_{2}(L) \cdot 0.9+\left(1-s_{1}(L)\right)\left(1-s_{2}(L)\right) \cdot 0.7
\end{array}\right] \\
=\max _{s_{1}}\left[\left(0.1-s_{2}(L) \cdot 0.4\right) \cdot s_{1}(L)+\left(0.7+s_{2}(L) \cdot 0.2\right)\right] \\
\Rightarrow 0.1-s_{2}(L) \cdot 0.4=0 \\
\Rightarrow s_{2}(L)=1 / 4, s_{2}(R)=3 / 4
\end{gathered}
$$

Computing Minmax

For 2 players minmax is solvable with LP (Linear Programming).

Computing Minmax

For 2 players minmax is solvable with LP (Linear Programming).

$$
\begin{array}{rlr}
\text { minimize } & U_{1}^{*} & \\
\text { subject to } & \sum_{k \in A_{2}} u_{1}\left(a_{1}^{j}, a_{2}^{k}\right) \cdot s_{2}^{k} \leq U_{1}^{*} & \\
& \sum_{k \in A_{2}} s_{2}^{k}=1 & \\
& s_{2}^{k} \geq 0 & \forall k \in A_{1}
\end{array}
$$

